Linear independence of time frequency translates for special configurations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Independence of Time Frequency Translates for Special Configurations

We prove that for any 4 points in the plane that belong to 2 parallel lines, there is no linear dependence between the associated time-frequency translates of any nontrivial Schwartz function. If mild Diophantine properties are satisfied, we also prove linear independence in the category of L2(R) functions.

متن کامل

Linear Independence of Time-frequency Translates

Abstract. The refinement equation φ(t) = ∑N2 k=N1 ck φ(2t − k) plays a key role in wavelet theory and in subdivision schemes in approximation theory. Viewed as an expression of linear dependence among the time-scale translates |a|1/2φ(at − b) of φ ∈ L2(R), it is natural to ask if there exist similar dependencies among the time-frequency translates e2πibtf(t + a) of f ∈ L2(R). In other words, wh...

متن کامل

Linear Independence of Time-frequency Translates in R

We establish the linear independence of time-frequency translates for functions f on R having one sided decay limx∈H, |x|→∞ |f(x)|ec|x| log |x| = 0 for all c > 0, which do not vanish on an affine half-space H ⊂ R.

متن کامل

Linear Independence of Time-frequency Translates of Functions with Faster than Exponential Decay

We establish the linear independence of time-frequency translates for functions f having one sided decay limx→∞ |f(x)|e log x = 0 for all c > 0. We also prove such results for functions with faster than exponential decay, i.e., limx→∞ |f(x)|e = 0 for all c > 0, under some additional restrictions.

متن کامل

On Linear Independence for Integer Translates of a Finite Number of Functions

We investigate linear independence of integer translates of a finite number of compactly supported functions in two cases. In the first case there are no restrictions on the coefficients that may occur in dependence relations. In the second case the coefficient sequences are restricted to be in some ` space (1 ≤ p ≤ ∞) and we are interested in bounding their `-norms in terms of the L-norm of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Research Letters

سال: 2010

ISSN: 1073-2780,1945-001X

DOI: 10.4310/mrl.2010.v17.n4.a14